Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 358: 120919, 2024 May.
Article in English | MEDLINE | ID: mdl-38663079

ABSTRACT

Habitat models rarely consider macroinvertebrate communities as ecological targets in rivers. Available approaches mainly focus on single macroinvertebrate species, not addressing the ecological needs and functionality of the whole community. This research aimed at providing an approach to model the habitat of the macroinvertebrate communities. The study was carried out in three rivers, located in Italy and characterized by a braiding morphology, gravel riverbeds, and low flows during the summer period. The approach is based on the recently developed Flow-T index, together with a Random Forest (RF) regression, which is employed to apply the Flow-T index at the mesohabitat scale. Using different datasets gathered from field data collection and 2D hydrodynamic simulations, the model was calibrated in the Trebbia River (2019 field campaign) and validated in the Trebbia, Taro, and Enza rivers (2020 field campaign). The RF model selected 12 mesohabitat descriptors as important for the macroinvertebrate community. These descriptors belong to different frequency classes of water depth, flow velocity, substrate grain size, and connectivity to the main river channel. The cross-validation R2 coefficient (R2cv) of the training dataset was 0.71, whereas the R2 coefficient (R2test) for the validation dataset was 0.63. The agreement between the simulated results and the experimental data shows sufficient accuracy and reliability. The outcomes of the study reveal that the model can identify the ecological response of the macroinvertebrate community to possible flow regime alterations and river morphological modifications. Lastly, the proposed approach allowed to extend the MesoHABSIM methodology, widely used for the fish habitat assessment, to a different ecological target community. Further applications of the approach can be related to ecological flows design in both perennial and non-perennial rivers, including river reaches in which fish fauna is absent.


Subject(s)
Ecosystem , Invertebrates , Rivers , Animals , Models, Theoretical , Italy
2.
Sci Rep ; 12(1): 21756, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36526730

ABSTRACT

Knowledge about the frequency and duration of each flowing status of non-perennial rivers is severely limited by the small number of streamflow gauges and reliable prediction of surface water presence by hydrological models. In this study, multispectral Sentinel-2 images were used to detect and monitor changes in water surface presence along three non-perennial Mediterranean rivers located in southern Italy. Examining the reflectance values of water, sediment and vegetation covers, the bands in which these classes are most differentiated were identified. It emerged that the false-color composition of the Sentinel-2 bands SWIR, NIR and RED allows water surfaces to be clearly distinguished from the other components of the river corridor. From the false-color composite images, it was possible to identify the three distinct flowing status of non-perennial rivers: "flowing" (F), "ponding" (P) and "dry" (D). The results were compared with field data and very high-resolution images. The flowing status was identified for all archive images not affected by cloud cover. The obtained dataset allowed to train Random Forest (RF) models able to fill temporal gaps between satellite images, and predict the occurrence of one of the three flowing status (F/P/D) on a daily scale. The most important predictors of the RF models were the cumulative rainfall and air temperature data before the date of satellite image acquisition. The performances of RF models were very high, with total accuracy of 0.82-0.97 and true skill statistic of 0.64-0.95. The annual non-flowing period (phases P and D) of the monitored rivers was assessed in range 5 to 192 days depending on the river reach. Due to the easy-to-use algorithm and the global, freely available satellite imagery, this innovative technique has large application potential to describe flowing status of non-perennial rivers and estimate frequency and duration of surface water presence.

SELECTION OF CITATIONS
SEARCH DETAIL
...